Saturday 8 October 2016

Category for Chargeman


No
category
certificate
classification
Low Voltage System (Below 1000V)
1
AO
PJ1
Low Voltage System (Without Aerial Line and Power Station)
2
A1
PJ2
Low Voltage System (Without Power Station)
3
A4-2
PJ32
Low Voltage System (Without Aerial Line and Synchronizing of Generators)
4
A4-1
PJ3
Low Voltage System (Without Synchronizing of Generators)
5
A4
PJ4
Low Voltage System
High Voltage System ( 11kV or 33kV)
6
BO-2
PJ52
High Voltage System (Without High Voltage Aerial Line and High Voltage Power Station; and Without Low Voltage Aerial Line and Low Voltage Synchronizing of Generators)
7
BO-1
PJ5
High Voltage System (Without High Voltage Aerial Line and High Voltage Power Station; and Without Low Voltage Synchronizing of Generators)
8
BO
PJ6
High Voltage System (Without High Voltage Aerial Line and High Voltage Power Station)
9
B1
PJ7
High Voltage System (Without High Voltage Power Station)
10
B4
PJ8
High Voltage System

Wednesday 31 August 2016

GOODS HOIST

Kali ini nak bercerita sedikit berkenaan goods hoist atau lift barangan. Satu keperluan penting bila melibatkan pemindahan barang dari satu tingkat ke satu tingkat.

Oklah... cerita ringkas.. straight to the point. Dalam sistem hoist ni mesti ada panel kawalan (seperti dibawah).


Ada motor dan kabel, seperti gambar kat bawah.


 
dan dah tentunya ada cage atau sangkar. Atau ada juga panggil "car". Itu saya tak nak cerita, kalau sempat saya tambah. Kali ini nak cerita pasal panel dan motor je. Biasanya mende ni yang ada problem yang susah sikit nak tackle.

PANEL KAWALAN


Dalam gambar diatas ditunjukkan kedudukan setiap komponen dalam panel tersebut. Voltage kawalan yang digunakan adalah 24VDC. Ini dibekalkan oleh contoller adaptor atau power supply seperti dalam gambar. Pandangan dekatnya adalah seperti dibawah.



Power supply ini dilengkapi fius dan MCB untuk keselamatan.



Pandangan dekat di bahagian terminal.


Seterusnya ia disambungkan kepada suis, relay dan alat kawalan lain.






Litar kawalan ini seterusnya disambungkan kepada penyambung yang diletakkan dibahagian bawah panel.

Tandaan litar kawalan yang berkait dengan penyambung ada diletakkan pada pintu panel.



PERJALANAN MOTOR

Power supply dan kawalan kemotor dikawal oleh satu MCB 3P dan satu set interlock contactor (foward reverse). 


Pada motor tersebut juga ada terpasang satu sistem brek yang hanya akan dilepaskan apabila bekalan diberikan kepada motor. Kawalan brek tersebut dibuat dengan menggunakan solenoid yang akan menarik mekanisma untuk membuka brek ketika bekalan diberikan dan melepaskannya ketika tiada bekalan. Dengan cara ini, hoist akan terhenti ketika tiada bekalan diberikan.


atau dengan kata lain, ketika bekalan diberikan kepada motor untuk menghidupkannya, pada masa sama, bekalan diberikan untuk melepaskan brek. Kedudukan brek adalah bersebelahan motor.






Gambar soleniod dan brek secara dekat













Ketika bekalan dihidupkan, solenoid akan di menarik pelepas brek kearah bawah, seperti anak panah arah anak panah dibawah.



Dibawah ini adalah gambar solenid yang perlu ditukar sekiranya berlaku kerosakan brek. Biasanya solenoid in perlu ditukar apabila melebihi 1 tahun (bergantung kepada kegunaan). Untuk melepaskan brek secara manual, pelepas brek boleh ditekan kebawah seperti arah anak panah.


Peringatan, JANGAN USIK SOLENIOD SEBELUM PENGGANTUNG HOIST DIPASANG. Ini penting kerana, sebaik sahaja solenid diusik, kemungkinan hoist akan turun kebawah adalah besar. Pelepas brek tersebut boleh dilepaskan secara manual dengan menekan menggunakan tangan seperti arah yang sama seperti penarikan oleh solenoid (seperti gambar yang mempinyai anak panah diatas diatas).


Nota :

Antara tanda-tanda brek ada masalah adalah :-

- Ketika turun kebawah, hoist akan turun dan terus turun walam pun sudah mencapai tahap terendah yang disetkan.

- Ketika ada beban, lift akan turun ketika berhenti di tempat tinggi. (motor tidak dapat berhenti bila ada beban).

- Bunyi motor bising seperti berat atau motor berjalan ada bunyi geseran tinggi.

- Berbau hangit.

- MCB motor trip dan motor tak dapat dihidupkan buat sementara waktu. Pemeriksaan terhadap bekalan kuasa pula didapati dalam keadaan normal/biasa.


































Saturday 27 August 2016

MUAR BLACK OUT 14/0/2016 TO 16/08/2016

Gambar dibawah adalah gambar-gambar bekalan sokongan dari TNB ketika Black out disebahagian besar Bandar Muar. 

Ianya bermula pada 14/08/2016 sekitar jam 6.00pm sehingga jam 09.00 pm. Disebabkan kerosakan awal tidak dapat dikenal pasti, esoknya iaitu pada 15/08/2016, kerosakan berulang. Pada jam (sekitar) 6.00pm, Bekalan sokongan dihantar oleh TNB. Dikatakan sebanyak 14 generator mudah alih disediakan di kawasan terbabit sekita Muar. Meliputi Jalan Salleh, Jalan Abdullah dan lain-lain kawasan.










(didalam gambar ini saya cuba padamkan identiti orang dan kenderaan sedapat mungkin)

Kerosakan dikatakan berpunca dari kerosakan bawah tanah kabel 11KV di kawasan menghala ke Bukit Pasir.

Bekalan pulih sepenuhnya sekitar jam 4.30pm jam , pada 16/08/2016.


Bila berlaku black out sebegini, apa yang terlintas di fikiran saya apabila diberitahu bekalan sokongan dihantar... adakah generator sokongan tersebut dapat menampung kegunaan yang ada? Ini juga adalah peluang untuk memberi tunjuk ajar kepada mereka yang baru.

Kebimbangan ini timbul kerana premis dibawah jagaan saya mengunakan arus sekitar (maksima) 600A. Oleh itu saya kena pastikan kemampuan bekalan sekurang-kurang setara dengan permintaan keseluruhan terhadap alat ubah sedia ada.

Alhamdulillah... generator sokongan (dalam gambar) mampu menjana sehingga 1250KVA.

Bila di sebut nilai ini, apa nilai KW atau Amp yang boleh ditampung.

Disini sekadar kiraan ringkas untuk panduan (sendiri...)

1250KVA ---> 1250 x 0.8

= 1000KWH (biasanya p.f genset adalah 0.8)

arus yang boleh dibekalkan 

= 1.7*1000

= 1700 A (perfasa)

kegunaan dibenarkan adalah 80% dari nilai tersebut.

oleh itu arus maksimum adalah

= 1700 * 0.8

= 1360 A.

Didapati bekalan oleh genset ini lebih besar dari yang boleh dibekalkan oleh alat ubah sedia ada iaitu ada iaitu 1000A.

Oleh itu tiada masalah dalam bekalan terhadap premis sedia ada.

Nak senang kiraan... ambil je... berapa nilai KVA yang boleh dijana, itulah nilai arus yang boleh dihasilkan. Mudah dan selamat, walaupun kurang betul. 

(Maksud saya : secara ringkas 1250KVA boleh tampung 1250A perfasa... tak yah pening... dah tentu selamat)

Nota : Ini adalah kiraan secara ringkas untuk memudahkan anggaran. Jika ada yang perlu di perbetulkan, di persilakan.


LITAR KAWALAN MOTOR

litar ni member minta buatkan... untuk mudahkan rujukan, saya masukkan kat sini untuk dikongsikan.

Litar kawalan simple untuk kawalan motor/water pump. Kenapa dikatakan simple..., cuma pakai timer relay dan timer sahaja dah boleh pakai. OK lah... litarnya seperti dibawah.



untuk lebih jelas, litar di atas di ubah posisi...



Jika ingin mengunakan DOL yang tersedia dengan kotaknya (seperti gambar) , sedikit ubahsuaian perlu dilakukan pada starter DOL tersebut. Pada DOL biasa, contactor dihidupkan oleh suis tekan (bewarna hijau) dan dimatikan oleh suis bewarna merah. Dengan ubahsuai litar ini, contactor akan dihidupkan atau dimatikan dengan kawalan sepenuhnya oleh litar diatas. Masa hidup atau mati pam ditentukan oleh masa yang di set (tala) pada pemasa (timer relay) yang ditandakan.  Timer T1, T3, T5 adalah masa yang disetkan untuk pam hidup (ON), sementara T2,T4, T6 pula masa disetkan untuk pam mati (OFF). 

Pada litar tersebut, thermal overload dikekalkan dan berfungsi untuk mematikan litar andainya ada kerosakan pada sambungan litar : 

Sambungan litar pada DOL

Sambungkan L,N (kabel merah dan hitam)  kepada punca kuasa (power supply)

Sambungkan kabel kuning kepada kabel yang ditandakan "pump contactor"


Dibahagian LOAD pula, sambungkan  kepada motor. Pastikan sambungan pada bahagian thermal overload tidak dicabutkan dan dalam keadaan baik. Sekiranya controller  ini "trip" disebabkan overload, butang reset sedia ada boleh digunakan seperti biasa.




Gambar : Litar penuh



Sekiranya DOL yang dibuat sendiri, pastikan thermal overload dipasang pada litar untuk keselamatan. 



Sekiranya corak atau pola ini mahu dipanjangkan lagi, Litar diatas boleh ditambah dengan pola yang sama. Maka corak ON/OFF boleh ditambah bergantung kepada bilangan relay dan timer digunakan. Setiap ON/OFF tambahan memerlukan tambahan dua (2) timer dan satu(1) relay. Sambungan pada litar ditandakan dibawah boleh di buang atau ditambah untuk memanjang atau memendekkan corak yang dikehendakki.




SEKADAR RUJUKAN

Dibawah ini adalah gambar starter DOL yang digunakan.


Gambar DOL asal




Gambar DOL yang di ubah pendawaiannya




Gambar : sambungan di bahagian bekalan dan kawalan




Gambar : Sambungan dibahagian beban atau sambungan ke motor



Perhatikan sambungan pada bahagian Thermal Overload. Ianya tidak boleh dibuang untuk mememastikan peralatan atau litar ini mempunyai ciri-ciri keselamatan.


Gambar : Pandangan sambungan dari tepi 



contoh contactor / thermal overload yang boleh digunakan



NOTA :

A1, A2 : CONTACTOR COIL

13, 14 : NO (normally open connection) - biasanya untuk litar kawalan

21, 22 : NC (normally close connection) - biasanya untuk litar kawalan

1L1, 3L2, 5L3 : POWER SUPPLY - litar kuasa

2T1, 4T2, 5T3 : LOAD - litar kuasa



95, 96 : (normally close connection) - Untuk litar kawalan. Sambungan disini perlu untuk sambungan kepada thermal overload.

97, 98 : (normally open connection) - Untuk litar kawalan. Sambungan ini biasanya digunakan untuk menunjukkan overloada trip.






Semoga ianya berjaya digunakan.




Wassalam.




Power and energy


In physics, power is the rate of doing work. It is the amount of energy consumed per unit time. Having no direction, it is a scalar quantity. In the SI system, the unit of power is the joule per second (J/s), known as the watt in honour of James Watt, the eighteenth-century developer of the steam engine.

The Great “Power vs. Energy” Confusion
February 2nd, 2015 by Guest Contributor 
By Rob Lewis
“I went on a diet and lost 15 horsepower.”
“I filled up my car’s gas tank. It took 20 volts.”
Most people would recognize these statements as nonsense. After all, it seems obvious that weight isn’t measured in horsepower, and a quantity of liquid isn’t measured in volts. In both cases, the speaker got the units of measure wrong.
While these mistakes may be absurd, in the field of energy generation and storage, similar errors are made all the time, and hardly anybody seems to notice. The core problem is confusion of two related, but different, physical quantities: energy and power. They’re not the same thing! If you read and understand this article, you’ll know more about the difference than a lot of reporters, and when you hear that a new wind farm will generate “250 megawatts per year,” you’ll know that something is wrong!
 So what is energy, anyway?




While we all have a vague sense of what energy is, it helps to know the precise definition. Stated as simply as possible, energy is the capacity to do work. In physics, work is the act of exerting a force over a distance. Pushing a sofa across a room, or lifting your carry-on into a plane’s overhead compartment are both work. (On the other hand, just standing there with your suitcase held over your head might tire you out, but it’s technically not work because you’re not actually moving the luggage.)
So we might say that energy is what makes it possible to push things around. The “thing” might be a car moving down a highway, a lump of bread dough on your kneading board, or an electron in the filament of a light bulb. Pushing these things around is work, and it takes energy to do it. If we know the strength of the force we need in order to move an object, and the distance we’re going to move it, we can calculate the amount of energy we’ll need.
There are several different units used to measure energy: joules, BTUs, newton-meters, and even calories. When we’re talking about electrical energy, the most common unit is the watt-hour. One watt of electrical power, maintained for one hour, equals one watt-hour of energy. A thousand of these is a kilowatt-hour (kWh), and note that a thousand watts for one hour, or one watt for a thousand hours, both equal one kWh. They’re the same amount of energy.
Working Faster = More Power
Did you see how I snuck the term “power” into that last paragraph? Here’s the critical difference between it and energy: while energy measures the total quantity of work done, it doesn’t say how fast you can get the work done. You could move a loaded semi-trailer across the country with a lawnmower engine if you didn’t care how long it took. Other things being equal, the tiny engine would do the same amount of work as the truck’s big one. And it would produce the same amount of energy and burn the same amount of fuel. But the bigger engine has more power, so it can get the job done faster. Power is defined as the rate of producing or consuming energy. Say this ten times: “Power and energy are not the same thing! Power is energy per unit of time.
The standard unit of electrical power is the watt, which is defined as a current of one ampere, pushed by a voltage of one volt. More simply, volts x amps = watts (there is a complication if we’re talking about alternating current, but we’ll ignore it for now). In the USA, the standard wall socket delivers 120 volts. If you plug in a light bulb and find that a current of ½ amp is flowing through it, you know that the power used by the bulb is (120) x (½), or 60 watts.
So much for power. How much energy is the bulb using? That depends on how long we leave it burning. A 60-watt bulb burning for one hour will consume 60 watt-hours of energy. Ten bulbs burning for ten hours would consume 10 x 60 x 10, or 6,000 watt-hours, which we can write more conveniently as 6 kWh. A thousand households all doing this would consume 6,000 kWh, which equals 6 megawatt-hours, or 6 MWh (since 1,000,000 watts = 1,000 kilowatts = 1 megawatt).
So the thing to remember about measurements of electrical energy is to always look for the “hours.” It simply makes no sense to say that a power plant can generate so many “megawatts per year.” What they probably mean is “megawatt-hours per year.”
Well, wait a minute. Doesn’t “megawatt-hours per year” fit our definition of power? It’s energy (megawatt-hours) per unit of time (years). Exactly right! So instead of spelling out “megawatt-hours per year,” wouldn’t it be simpler to just rate the power plant in watts? Indeed it would. And since there are 8,766 hours in an average year, we can convert “MWh/year” into just “MW” by dividing by this number. This tells us that our hypothetical wind farm producing 250 MWh/year is generating power at an average rate of 250 ÷ 8766, or 0.0285 MW, which is the same as 28.5 kW.
Notice I said “average rate.” When the wind’s not blowing, the rate of production is of course zero kW. So in order to average 28.5 kW, the wind farm would have to produce considerably more than that some of the time. This leads to another important spec called “peak power output”: the maximum that the wind turbines can produce under ideal conditions. For our 28.5 (average) kW plant, the peak output could be 50 kW or more.
Solar plants of course have similar considerations: zero output at night, and peak output typically at high noon in summertime. But if you average this out over a year, you get an average output rating in kilowatts or megawatts.
Energy Storage: Both Watts and Watt-Hours
Much of the discussion about clean energy concerns ways of storing it for those times when the wind isn’t blowing or the sun isn’t shining. Without effective storage, we’re forced to rely on conventional power plants during these periods.
Energy storage usually means batteries, but there are other ways, like pumped hydro and molten salt. But whatever the technology, there are two performance parameters of interest:
1.    How much total energy can the system store? (Think watt-hours)
2.    How much power can it deliver at any moment? (Think watts)
The usefulness of a storage system depends on both of these quantities. A system that stored an enormous amount of energy wouldn’t be very useful if it could only return that energy a few watts at a time. And a system powerful enough to light up a whole city wouldn’t be good for much if its batteries died after a few minutes.
The moral of this story: storage systems have to be able to store enough energy to last through the “blackout” periods, and they have to be able to deliver that energy fast enough to meet the electrical load. Once you know both the energy storage capacity (say, in megawatt-hours) and the output power (say, megawatts), you can simply divide these numbers to find how long the backup power will last. For example, a 20 megawatt-hour storage facility delivering power at the rate of 2 megawatts will last for 20 ÷ 2, or 10 hours on a full charge.
Conclusion
It’s common for people to use the words “power” and “energy” interchangeably. But now you know the difference: energy is the total amount of work done, and power is how fast you can do it. In other words, power is energy per unit of time. Power is watts. Energy is watt-hours.
Image: electricity, via Shutterstock


Work
refers to an activity involving a force and movement in the directon of the force. A force of 20 newtons pushing an object 5 meters in the direction of the force does 100 joules of work.
Energy
is the capacity for doing work. You must have energy to accomplish work - it is like the "currency" for performing work. To do 100 joules of work, you must expend 100 joules of energy.
Power
is the rate of doing work or the rate of using energy, which are numerically the same. If you do 100 joules of work in one second (using 100 joules of energy), the power is 100 watts.